تحلیل آشوب، تجزیۀ موجک و شبکۀ عصبی در پیش بینی شاخص بورس تهران
نویسندگان
چکیده
این مطالعه برای پیش بینی بازدهی شاخص قیمت و بازده نقدی بورس اوراق بهادار تهران، آشوب را تحلیل و پیش بینی پذیری را بررسی کرده و نیز عملکرد انواع مدل های شبکۀ عصبی را با کمک داده های تجزیه شده با روش موجک ارزیابی کرده است. به همین منظور، از داده های سری زمانی روزانه و سری بازدهی شاخص قیمت و بازده نقدی بورس طی دورۀ زمانی ۵ فروردین ۱۳۸۸ تا ۱۸ اردیبهشت ۱۳۹۱ استفاده شده است. براساس نتایج این مطالعه، سری بازدهی بورس در دورۀ بررسی شده، پیش بینی پذیر بوده و آثار غیرخطی معیّن و آشوبی داشته است. همچنین برطبق معکوس آمارۀ حداکثر نمای لیاپانوف، تعداد روز های پیش بینی پذیر در این مطالعه، ۳۱ روز به دست آمد. یافتۀ دیگر این پژوهش نیز به برتری عملکرد مدل های شبکۀ عصبی چندلایۀ پیش خور ( mfnn ) و شبکۀ عصبی فازی ( anfis ) مبتنی بر داده های تجزیه شده به کمک تجزیۀ موجک در مقابل به کارگیری سطح داده ها دلالت دارد. دراین بین نیز برتری با مدل شبکۀ عصبی چندلایۀ پیش خور بوده است.
منابع مشابه
تحلیل آشوب، تجزیۀ موجک و شبکۀ عصبی در پیشبینی شاخص بورس تهران
This study investigates predictability, chaos analysis, wavelet decomposition and the performance of neural network models in forecasting the return series of the Tehran Stock Exchange Index (TEDPIX). For this purpose, the daily data from April 24, 2009 to May 3, 2012 is used. Results show that TEDPIX series is chaotic and predictable with nonlinear effect. Also, according to obtained inverse o...
متن کاملتحلیل آشوب، تجزیۀ موجک و شبکۀ عصبی در پیشبینی شاخص بورس تهران
این مطالعه برای پیشبینی بازدهی شاخص قیمت و بازده نقدی بورس اوراق بهادار تهران، آشوب را تحلیل و پیشبینیپذیری را بررسی کرده و نیز عملکرد انواع مدل های شبکۀ عصبی را با کمک دادههای تجزیهشده با روش موجک ارزیابی کرده است. بههمین منظور، از داده های سریزمانی روزانه و سری بازدهی شاخص قیمت و بازده نقدی بورس طی دورۀ زمانی ۵ فروردین ۱۳۸۸ تا ۱۸ اردیبهشت ۱۳۹۱ استفاده شده است. براساس نتایج این م...
متن کاملپیش بینی شاخص بورس اوراق بهادار تهران با استفاده از شبکه های عصبی
اندازه و روند شاخصهای قیمت سهام یکی از مهمترین عوامل تاثیرگذار بر تصمیمات سرمایه گذاران در بازارهای مالی میباشد. جهت پیشبینی بازار از تکنیکهای مختلفی استفاده شده است که معمولترین آنها روشهای رگرسیون و مدلهای 3ARIMA هستند اما این مدلها در عمل جهت پیشبینی بعضی از سریها ناموفق بودهاند. در تحقیق حاضر برای پیشبینی شاخص کل بورس از مدل شبکههای عصبی پیش خور4 با قانون یادگیری پس انتشار خطا5 در...
متن کاملپیش بینی شاخص قیمت بورس سهام با استفاده از شبکه عصبی و تبدیل موجک
شاخص بازار سرمایه به عنوان دماسنج اقتصادی هر کشور می باشد. از این رو پیش بینی این متغییر جهت اخذ دید کلی از وضعیت اقتصادی و اخذ استراتژی های سرمایه گذاری، یکی از مسائل مهم به شمار می رود. از جمله روش های پیش بینی پرکاربرد در سری های زمانی مالی، شبکه عصبی می باشد که با توجه به جامعیت این روش و عدم وجود برخی از پیش فرض ها در خصوص داده ها، گسترش زیادی نسبت به روش های آماری یافته است. اما وجود نویز...
متن کاملپیش بینی پذیری،وجود آشوب و فرایندهای غیرخطی شاخص قیمت سهام در بورس تهران(tepix)
پیش بینی و آگاهی از آینده به منظور برنامه ریزی و تدوین استراتژی های اقتصادی بر کسی پوشیده نیست. دقت پیش بینی ها یکی از مهم ترین فاکتورهای موثر در انتخاب نوع روش پیش بینی است.روش های کمی،ازجمله مهم ترین روش های پیش بینی موجود می باشد که بر اساس تجزیه وتحلیل های مربوط به مقادیر گذشته خود متغیر وابسته و یا متغیرهای مستقل موثر بر متغیر وابسته عمل می کنند. شاخص های قیمت سهام هم یکی از متغیرهای موثر ...
پیش بینی شاخص سهام با استفاده از شبکه های عصبی موجکی در بورس اوراق بهادار تهران
در این تحقیق شاخص کل سهام بورس اوراق بهادار تهران با استفاده از مدلهای مختلف شبکه های عصبی پیش بینی شده است. تحقیق از نوع کاربردی است و دورۀ زمانی انجام تحقیق از ابتدای سال 81 تا پایان سال 90 است. گردآوری اطلاعات از طریق آمار و دادههای موجود در پایگاه اطلاعاتی در بورس اوراق بهادار تهران صورت گرفته است. برای ایجاد مدل wdbp از موجک db5 برای نویززدایی دادهها و تا پنج مرحله صورت گرفته است. جذر م...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
تحقیقات مدلسازی اقتصادیجلد ۲، شماره ۸، صفحات ۱۱۹-۱۴۰
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023